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Received: 9 August 2004 / Revised version: 10 March 2005 /
Published online: 8 June 2005 – c© Springer-Verlag / Società Italiana di Fisica 2005

Abstract. We study the scalar potential and the mass spectrum of the supersymmetric extension of a
three-family model based on the local gauge group SU(3)C ⊗ SU(3)L ⊗ U(1)X , with anomalies canceled
among the three families in a non-trivial fashion. In this model the slepton multiplets play the role of the
Higgs scalars and no higgsinos are required, with the consequence that the sneutrino, the selectron and six
other sleptons play the role of the Goldstone bosons of the theory. By introducing an Abelian anomaly-free
discrete symmetry and aligning the vacuum in a convenient way, we get a consistent mass spectrum for
the scalars and for the spin 1/2 quarks and charged leptons, where only the top and charm quarks and
the tau lepton acquire tree-level masses while the remaining ordinary charged fermions acquire radiative
hierarchical masses.

PACS. 12.60.Jv, 12.60.Cn, 12.15.Ff

1 Introduction

Among the unsolved questions of the standard model
(SM), which is a theory based on the local gauge group
SU(3)c ⊗ SU(2)L ⊗ U(1)Y [1], the elucidation of the na-
ture of the electroweak symmetry breaking remains one of
the most challenging issues. If the electroweak symmetry
is spontaneously broken by Higgs scalars, the determina-
tion of the value of the Higgs mass MH in the context of
the SM becomes a key ingredient. By direct search LEP-II
has set an experimental lower bound for a neutral scalar,
member of a pure SU(2)L doublet, of 114.4 GeV [2] .

Today, supersymmetry (SUSY) is considered as the
leading candidate for new physics. Even though SUSY
does not solve all open questions, it has attractive fea-
tures, the most important one being that it protects the
electroweak scale from destabilizing divergences, that is,
SUSY provides an answer as to why the scalars remain
massless down to the electroweak scale where there is
no symmetry protecting them (the “hierarchy problem”).
This has motivated the construction of the minimal su-
persymmetric standard model (MSSM) [3], the supersym-
metric extension of the SM, that is defined by the minimal
field content and minimal superpotential necessary to ac-
count for the known Yukawa mass terms of the SM. At
present, however, there is no experimental evidence that
Nature is supersymmetric, and the only experimental fact
that points toward a beyond the SM structure lies in the
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neutrino sector, and even there the results are not final
yet. So, a reasonable approach is to depart from the SM
as little as possible, allowing for some room for neutrino
oscillations [4].

In that direction, over the last decade several vari-
ants of the SM extension based on the local gauge group
SU(3)c⊗SU(3)L⊗U(1)X (hereafter called the 3-3-1 struc-
ture), where anomalies cancel by an interplay between the
three families, have received special attention. In some
of them the three known left-handed lepton components
for each family are associated to three SU(3)L triplets
as (νl, l

−, l+)TL , where l+L is related to the right-handed
isospin singlet of the charged lepton l−L in the SM [5] . In
other models the three SU(3)L lepton triplets are of the
form (νl, l

−, νc
l )

T
L where νc

lL is related to the right-handed
component of the neutrino field νlL [6,7]. There are also
models in the literature with SU(3)L lepton triplets of the
form (l−, νl, L

−)TL , where L−
L is an exotic charged lepton

with electric charge −1 [7,8]. In the first model anomaly
cancellation requires quarks with exotic electric charges
−4/3 and 5/3 which in turn imply double charged gauge
and Higgs bosons, while in the other models the exotic
particles have only ordinary electric charges.

As it is shown in [7], there are just a few different non-
supersymmetric three-family models based on the 3-3-1
local gauge structure which are free of chiral anomalies
and do not include particles with exotic electric charges.
These models share in common not only the same gauge
boson sector, but also the same scalar sector. In this paper
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we are going to construct a consistent SUSY extension of
a three-family model which is the simplest one with regard
to the three-family 3-3-1 models introduced in [7].

Our main motivation lies in the 3-3-1 SUSY one-family
model presented in [9], in which the left-handed lepton
triplets and the Higgs scalars needed to break the symme-
try down to SU(3)c⊗U(1)Q, have the same quantum num-
bers under the gauge group, and may play the role of the
superpartners of each other. As a result, in the one-family
model several consequences follow [9]: first, the reduction
of the number of free parameters as compared to super-
symmetric versions of other 3-3-1 models in the literature
[10]; second, the result that the sneutrino, selectron and
six other sleptons do not acquire masses in the context of
the model constructed playing the role of the Goldstone
bosons; third, the absence of the µ problem, in the sense
that the µ term is absent at the tree level, arising only
as a result of the symmetry breaking, and fourth, the ex-
istence of light CP -odd scalars which may have escaped
experimental detection.

Our aim in this paper is to explore the possibility to
construct a realistic three-family 3-3-1 SUSY model as far
as the particle mass spectrum is concerned; the price we
have to pay is an alignment of the vacuum state and the
introduction of a discrete symmetry, as we will show in
due course. This paper is organized as follows: in Sect. 2
we briefly review the non-supersymmetric version of the
model, in Sect. 3 we comment on its supersymmetric ex-
tension and calculate the superpotential, in Sect. 4 we cal-
culate the mass spectrum (excluding the squark sector),
and in the last section we present our conclusions.

2 The non-supersymmetric model

The model we are going to supersymmetrize is based on
the local gauge group SU(3)c ⊗SU(3)L ⊗U(1)X . It has 17
gauge bosons: one gauge field Bµ associated with U(1)X ,
the eight gluon fields Gµ associated with SU(3)c which
remain massless after breaking the symmetry, and another
eight gauge fields associated with SU(3)L and that we
write for convenience as [7]

1
2
λαA

µ
α =

1√
2


 Dµ

1 W+µ K+µ

W−µ Dµ
2 K0µ

K−µ K̄0µ Dµ
3


 ,

where Dµ
1 = Aµ

3/
√

2 +Aµ
8/

√
6, Dµ

2 = −Aµ
3/

√
2 +Aµ

8/
√

6,
and Dµ

3 = −2Aµ
8/

√
6. The λi, i = 1, 2, ..., 8, are the eight

Gell-Mann matrices normalized as Tr(λiλj) = 2δij .
The charge operator associated with the unbroken

gauge symmetry U(1)Q is given by

Q = T3L +
T8L√

3
+XI3, (1)

where TiL = λiL/2, I3 = Diag(1, 1, 1) is the diagonal 3× 3
unit matrix, and the X values are related to the U(1)X

hypercharge and are fixed by anomaly cancellation. Equa-
tion (1) is a particular case of the most general expresion

for the electric charge generator in SU(3)c ⊗ SU(3)L ⊗
U(1)X given by Q = aT3L/2 + 2bT8L/

√
3 +XI3, where a

and b are free parameters, and corresponds to the choice
a = 1 (in order for the weak isospin to be contained in
SU(3)L) and b = 1/2 (so that the model does not contain
exotic electric charges) [7].

The sine of the electroweak mixing angle is given by
S2

W = 3g2
1/(3g

2
3 + 4g2

1) where g1 and g3 are the coupling
constants of U(1)X and SU(3)L respectively, and the pho-
ton field is given by

Aµ
0 = SWA

µ
3 + CW

[
TW√

3
Aµ

8 +
√

(1 − T 2
W/3)Bµ

]
, (2)

where CW and TW are the cosine and tangent of the elec-
troweak mixing angle, respectively.

There are two neutral currents in the model which are
defined as

Zµ
0 = CWA

µ
3 − SW

[
TW√

3
Aµ

8 +
√

(1 − T 2
W/3)Bµ

]
,

Z ′µ
0 = −

√
(1 − T 2

W/3)Aµ
8 +

TW√
3
Bµ, (3)

where Zµ
0 coincides with the weak neutral current of the

SM. Using (2) and (3) we may read the gauge boson Y µ

associated with the U(1)Y hypercharge in the SM Y µ =
TW√

3
Aµ

8 +
√

(1 − T 2
W/3)Bµ.

The quark content for the three families is the following
[7]: QiL = (ui, di, Di)TL ∼ (3, 3, 0), i = 2, 3, for two fam-
ilies, where DiL are two exotic quarks of electric charge
−1/3 (the numbers inside the parentheses stand for the
[SU(3)c, SU(3)L, U(1)X ] quantum numbers in that order);
Q1L = (d1, u1, U)TL ∼ (3, 3∗, 1/3), where UL is an exotic
quark of electric charge 2/3. The right-handed quarks are
uc

aL ∼ (3∗, 1,−2/3), dc
aL ∼ (3∗, 1, 1/3), with a = 1, 2, 3, a

family index, Dc
iL ∼ (3∗, 1, 1/3), and U c

L ∼ (3∗, 1,−2/3).
The lepton content is given by the three anti-triplets

LαL = (α−, ν0
α, N

0
α)TL ∼ (1, 3∗,−1/3), the three sin-

glets α+
L ∼ (1, 1, 1), α = e, µ, τ , and the vector-like

structure (vector-like with respect to the 3-3-1 gauge
group) L4L = (N0

4 , E
+
4 , E

+
5 )TL ∼ (1, 3∗, 2/3), and L5L =

(N0
5 , E

−
4 , E

−
5 )TL ∼ (1, 3,−2/3); where N0

s , s = e, µ, τ, 4, 5,
are five neutral Weyl states, and E−

η , η = 4, 5 are two
exotic electrons.

With the given quantum numbers it is just a mat-
ter of counting to check that the model is free of the
following chiral anomalies: [SU(3)c]3 (SU(3)c is vector-
like); [SU(3)L]3 (seven triplets and seven anti-triplets),
[SU(3)c]2U(1)X ; [SU(3)L]2U(1)X ; [grav]2U(1)X (the so-
called gravitational anomaly [11]) and [U(1)X ]3.

For this model the minimal scalar sector, able both
to break the symmetry and to give, at the same time,
masses to the fermion fields, is given by [12] χT

1 =
(χ−

1 , χ
0
1, χ

′0
1 ) ∼ (1, 3∗,−1/3), and χT

2 = (χ0
2, χ

+
2 , χ

′+
2 ) ∼

(1, 3∗, 2/3), with vacuum expectation values (VEV) given
by 〈χ1〉T = (0, v1, V ) and 〈χ2〉T = (v2, 0, 0), with the hi-
erarchy V � v1, v2. These VEV break the symmetry
SU(3)c ⊗ SU(3)L ⊗ U(1)Y −→ SU(3)c ⊗ U(1)Q in one
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single step and so, the SM can not be considered as an
effective theory of this particular 3-3-1 gauge structure.

This model, even though sketched in [7,12] where it
was named Model E, has not been studied in the literature
as far as we know. (A related model without the vector-
like structure L4L ⊕ L5L and with a scalar sector of three
triplets instead of two, has been partially analyzed in [6].)

Notice that in the non-supersymmetric model, univer-
sality for the known leptons in the three families is present
at the tree level in the weak basis, up to mixing with the
exotic fields. Since the mass scale of the new neutral gauge
boson Z ′ and of the exotic particles is of the order of V ,
this mixing will suppress tree-level flavor changing neu-
tral currents (FCNC) effects in the lepton sector. For the
quarks, instead, one family transforms differently from the
other two and, as a result, there can be potentially large
FCNC in the hadronic sector. Since it is not our goal to
discuss this issue here, the reader is referred to the recent
study presented in [13]. Let us, notwithstanding, point
out that the present model is associated to the one called
Model B in [13], for which the constraints imposed by fla-
vor changing phenomenology in the quark sector are not
so severe as for other 3-3-1 models.

3 The supersymmetric extension

When supersymmetry is introduced in the SM, the entire
spectrum of particles is doubled as we must introduce the
superpartners of the known fields. Also, two scalar dou-
blets φu and φd must be used in order to cancel the trian-
gle anomalies; then the superfields φ̂u and φ̂d, related to
the two scalars, may couple via a term of the form µφ̂uφ̂d

which is gauge and supersymmetric invariant, and thus
the natural value for µ is expected to be much larger than
the electroweak and supersymmetry breaking scales. This
is the so-called µ problem.

However, in a non-supersymmetric model as the one
presented in the former section, in which the Higgs fields
transform as some of the lepton fields under the symmetry
group, the SUSY extension can be constructed with the
scalar and the lepton fields acting as superpartners of each
other, ending up with a SUSY model without higgsinos [9],
which is automatically free of chiral anomalies.

For three families we thus have the following chiral
superfields: Q̂a, ûa, d̂a, D̂i, Û , L̂a, êa, and L̂η, plus gauge
bosons and gauginos, where a = 1, 2, 3 is a family index,
i = 1, 2, and η = 4, 5. The identification of the gauge
bosons eigenstates in the SUSY extension follows the non-
SUSY version, as it will be shown in Sect. 4.

3.1 The superpotential

Let us now write the most general SU(3)c ⊗ SU(3)L ⊗
U(1)X invariant superpotential for the model

W = hu
iaQ̂iûaL̂4 + hU

i Q̂iÛ L̂4 + hd
iabQ̂id̂aL̂b

+hD
ijaQ̂iD̂jL̂a + hd′

a Q̂1d̂aL̂5 + h′D
i Q̂1D̂iL̂5

+he
abL̂aêbL̂5 +

1
2
λabL̂aL̂bL̂4 + µL̂4L̂5

+λ(1)
abiûad̂bD̂i + λ

(2)
ai Û d̂aD̂i + λ

(3)
ijkQ̂iQ̂jQ̂k

+λ(4)
abcûad̂bd̂c + λ

(5)
aij ûaD̂iD̂j + λ

(6)
ab Û d̂ad̂b

+λ(7)
ij ÛD̂iD̂j , (4)

where summation over repeated indexes is understood,
and the chirality, color and isospin indexes have been omit-
ted.

The ûd̂D̂, Û d̂D̂, Û d̂d̂, ÛD̂D̂, ûd̂d̂, ûD̂D̂, and Q̂Q̂Q̂
terms violate baryon number and can lead to rapid proton
decay. We may forbid these interactions by introducing an
anomaly free discrete Z2 symmetry [14] with the following
assignments of Z2 charge q:

q(Q̂a, ûa, Û , D̂i, d̂a, µ̂, L̂µ) = 1,

q(L̂e, L̂τ , ê, τ̂ , L̂4, L̂5) = 0, (5)

where we have used ê1 ≡ ê, ê2 ≡ µ̂, ê3 ≡ τ̂ , L̂1 ≡ L̂e,
L̂2 ≡ L̂µ, and L̂3 ≡ L̂τ . This is just one among several
anomaly-free discrete symmetries available. This symme-
try protects the model from a too fast proton decay, but
the superpotential still contains operators inducing lepton
number violation, which is desirable if we want to describe
Majorana masses for the neutrinos in the model.

The Z2 symmetry also forbids some undesirable mass
terms for the spin 1/2 fermions which complicate unnec-
essarily several mass matrices. But notice the presence of
a µ term in the superpotential that, as we will show in
a moment is convenient to keep, in order to have a con-
sistent mass spectrum. So, contrary to the model in [9],
this model has a µ term coming from the existence of the
vector-like structure L̂4L ⊕ L̂5L.

3.2 The scalar potential

The scalar potential is written as

VSP = VF + VD + Vsoft, (6)

where the first two terms come from the exact SUSY sec-
tor, while the last one is the sector of the theory that
breaks SUSY explicitly.

We now display VF in (6), before implementing the
discrete Z2 symmetry:

VF =
3∑

a=1

∣∣∣∣ ∂W∂L̃a

∣∣∣∣
2

+
5∑

η=4

∣∣∣∣∣ ∂W∂L̃η

∣∣∣∣∣
2

(7)

= (λ†λ)ab

{
(L̃†

aL̃b)|L̃4|2 − (L̃†
aL̃4)(L̃

†
4L̃b)

}
+ ẽ†

aH
e
abẽb|L̃5|2 + (L̃T

a L̃5)(hehe†)abL̃
T
b L̃5

+
{

(λ†he)abL̃
∗
a · (L̃∗

4 × L̃5)ẽb + c.c.
}

+ |µ|2
(
|L̃4|2 + |L̃5|2

)
+
{
µ∗he

ab(L̃
†
4L̃a)ẽb + c.c.

}
+

1
4
λabλ

∗
cd

{
(L̃†

cL̃a)(L̃†
dL̃b) − (L̃†

dL̃a)(L̃†
cL̃b)

}
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+ he
abh

e∗
cd(L̃†

cL̃a)ẽbẽ
∗
d

+
{

1
2
µ∗λabL̃a · (L̃b × L̃∗

5) + c.c.
}
, (8)

where He = (he†he) is an hermitian 3 × 3 matrix, and
L̃a·(L̃b×L̃c) is a triple scalar product in the tridimensional
linear representation of SU(3)L.

When the Z2 symmetry is introduced VF gets reduced
to the expression

VF =
∣∣∣λL̃3 × L̃4 + he

11ẽL̃5 + he
13τ̃ L̃5

∣∣∣2
+
∣∣∣−λL̃1 × L̃4 + he

33τ̃ L̃5 + he
31ẽL̃5

∣∣∣2
+
∣∣∣λL̃1 × L̃3 + µL̃5

∣∣∣2
+ |he

22|2|L̃5|2|µ̃|2 + |he
22|2|L̃T

2 L̃5|2

+
∣∣∣he

11L̃
T
1 L̃5 + he

31L̃
T
3 L̃5

∣∣∣2
+
∣∣∣he

13L̃
T
1 L̃5 + he

33L̃
T
3 L̃5

∣∣∣2
+ |µL̃4 + he

22µ̃L̃2 + (he
11ẽ+ he

13τ̃)L̃1

+(he
31ẽ+ he

33τ̃)L̃3|2, (9)

where λ = λ13 = −λ31 ≡ λeτ is the only λab parameter
which survives. This form of VF is crucial for the analysis
that follows.

For the second term in VSP we have

VD =
1
2
DαDα +

1
2
D2

=
1
4
g2
3




4∑
α,β

(
|L̃†

αL̃β |2 − 1
3
|L̃α|2|L̃β |2

)

+
4∑
α

(
2|L̃†

αL̃5|2 − 2
3
|L̃α|2|L̃5|2

)
+

2
3
|L̃5|4

}

+
1
18
g2
1



(

3∑
a

|L̃a|2
)2

+ 4|L̃4|4 + 4|L̃5|4

−8|L̃4|2|L̃5|2 + 4
3∑
a

|L̃a|2|L̃5|2

−4
3∑
a

|L̃a|2|L̃4|2
}
. (10)

The soft SUSY-breaking scalar potential is

Vsoft = m2
abRe(L̃†

aL̃b) +m2
4|L̃4|2 +m2

5|L̃5|2
+ m2

45Re(L̃T
4 L̃5) + Re(he′

abL̃
T
a L̃5ẽb)

+
εijk

2
Re (λ′

abL̃aiL̃bjL̃4k)

+
M1

2
B̃0B̃0 +

M2

2

8∑
a=1

ÃaÃ
a + . . . , (11)
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Fig. 1. Radiatively induced VEV for φ0
5 and φ0

e

whereM1 is the soft mass parameter of the U(1)X gaugino
and M2 refers to the soft mass parameter of the SU(3)L
gauginos.

3.3 The vacuum

In this model we do not introduce Higgs scalars as it is
done for example in the MSSM. The duty of the sponta-
neous symmetry breaking is assigned to the neutral slep-
tons which are present in the chiral supermultiplets L̂α

and L̂η for α = e, µ, τ = 1, 2, 3 and η = 4, 5.
To use the most general VEV structure available, even

when properly rotated, is a hopeless task. What we pro-
pose here is to align the vacuum in the following way:
〈φe〉 = 〈(φ−

e , φ
0
e, φ

′0
e )〉 = (0, 0, 0); 〈φµ〉 = 〈(φ−

µ , φ
0
µ, φ

′0
µ )〉 =

(0, 0, 0); 〈φτ 〉 = 〈(φ−
τ , φ

0
τ , φ

′0
τ )〉 = (0, 0, V ); 〈φ4〉 =

〈(φ0
4, φ

+
4 , φ

′+
4 )〉 = (v, 0, 0) and 〈φ5〉 = 〈(φ0

5, φ
−
5 , φ

′−
5 )〉 =

(0, 0, 0), where we have introduced the notation φα ≡ L̃α

for the superpartners of Lα, and φη ≡ L̃η for the su-
perpartners of Lη. We also will use φ′+

e , φ′+
µ , φ′+

τ for
the scalar superpartners of the singlets e+L , µ+

L , τ+
L , re-

spectively. In what follows we are going to show that for
V � v ∼ 174 GeV (the electroweak breaking scale), this
alignment is enough to reproduce a consistent mass spec-
trum.

The former VEV structure allows us to break the sym-
metry in the following way:

3-3-1 V−→ SU(3)c ⊗ SU(2)L ⊗ U(1)Y

v−→ SU(3)c ⊗ U(1)Q, (12)

which in turn allows for the matching conditions g2 = g3
and

1
g′2 =

1
g2
1

+
1

3g2
3
, (13)

where g2 and g′
1 are the gauge coupling constants for the

gauge groups SU(2)L and U(1)Y of the SM, respectively.
A further study of the superpotential in (4) and the

scalar potential VF in (9) shows that even if 〈φ0
5〉 = 〈φ0

e〉 =
0 at the tree level, they both develop a radiatively induced
VEV different from zero, as it is shown in Fig. 1. In par-
ticular, the induced VEV for φ0

5 allows for small mases
for some spin 1/2 particles as, for example, for the down
quark d and for the electron e and muon µ, as we will see.
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4 Mass spectrum

Masses for the particles are generated from the VEV of the
scalar fields and from the soft terms in the scalar potential.

For simplicity we assume that the VEV are real, which
means that spontaneous CP violation through the scalar
exchange is not considered. Now, for convenience in read-
ing we rewrite the expansion of the scalar fields acquiring
VEV as

φ′0
τ = V +

φ′0
τR + iφ′0

τI√
2

,

φ0
4 = v +

φ0
4R + iφ0

4I√
2

, (14)

where the subindexes R and I refer, respectively, to the
real sector (CP -even scalars) and to the imaginary sector
(CP -odd scalars or pseudoscalars) of the sleptons.

Using (14), the minimization of the scalar potential
produces the following constraints:

|λ|2 − m2
33

v2

=
g2
3

6

(
2
V 2

v2 − 1
)

+
g2
1

9

(
V 2

v2 − 2
)

+ λ′
13

〈φ0
e〉

2vV
,

|µ|2 +m2
4

= V 2|λ|2 +
(
g2
3

6
+

2g2
1

9

)
(V 2 − 2v2) + λ′

13
〈φ0

e〉V
2v

,

m2
45 =

〈φ0
5〉
v

{(
V 2 − 2v2)(g2

3

3
− 4g2

1

9

)
− 2|µ|2 − 2m2

5

}
,

vV

2
λ′

13

= 〈φ0
e〉
{
g2
3

6
(V 2 + v2) − g2

1

9
(V 2 − 2v2) −m2

11

}
,

m2
13 = 0, (15)

where we have included, at the first order in 〈φ0
e〉 and

〈φ0
5〉, the radiative corrections coming from the induced

VEV shown in Fig. 1. Notice that by choosing m2
33 < 0

and of the order of V 2, the parameter λ can be as small
as desired.

Our approach will be to look for consistency in the
sense that the mass spectrum must include three light spin
1/2 neutral particles (the neutrinos) with the other spin
1/2 neutral fields having masses larger than or equal to
half of the Z0 mass, to be in agreement with experimental
bounds. The consistency of the model also requires eight
spin zero Goldstone bosons, four charged and four neutral
ones, out of which one neutral must be related to the real
sector of the sleptons (CP -even) and three neutrals to the
imaginary sector (CP -odd), in order to produce masses
for the gauge bosons W±, K±, K0, K̄0, Z0 and Z ′0
after the breaking of the symmetry.

4.1 Spectrum in the gauge boson sector

For the SUSY version of the model the gauge bosons are
the same 17 gauge bosons for the non-supersymmetric ver-

sion. After breaking the symmetry with 〈φτ 〉 + 〈φ4〉 and
using for the covariant derivative for triplets iDµ = i∂µ −
(g3/2)λαA

µ
α −g1XBµ, we get the following mass terms for

the charged gauge bosons: M2
W ± = (g2

3/2)v2 as in the SM,
M2

K± = (g2
3/2)(v2 +V 2), and M2

K0(K̄0) = (g2
3/2)V 2. Since

W± does not mix with K±, and g2 = g3, we have that
v ≈ 174 GeV as in the SM.

For the neutral gauge bosons we get mass terms of the
form

Mn =
g2
3

2

{
V 2
(

2g1Bµ

3g3
− 2Aµ

8√
3

)2

+v2
(
Aµ

3 +
Aµ

8√
3

− 4g1Bµ

3g3

)2
}
.

This expression is related to a 3×3 mass matrix with a
zero eigenvalue corresponding to the photon Aµ

0 given by
(2). Once the photon field has been identified, we remain
with a 2×2 mass matrix for the two neutral gauge bosons
Zµ

0 and Z ′µ
0 defined in (3).

The physical neutral gauge bosons are defined through
the mixing angle θ between Zµ

0 and Z ′µ
0 :

Zµ
1 = Zµ

0 cos θ + Z ′µ
0 sin θ ,

Zµ
2 = −Zµ

0 sin θ + Z ′µ
0 cos θ, (16)

where

tan(2θ) = − v2
√

3 − 4S2
W

2V 2C4
W − v2(2S2

W − 1)
, (17)

with θ −→ 0 in the limit V −→ ∞.
By using experimental results from the CERN LEP,

SLAC Linear Collider and atomic parity violation data,
bounds on the mass scale V of the new gauge bosons and
on the mixing angle θ have been calculated in [9,12,15].
Generically, V ≥ 1 TeV and θ ≤ 10−3.

4.2 Masses for the quark sector

4.2.1 Tree-level masses

For the up quark sector the first two terms in the super-
potential in (4) produce, when we take 〈L̃4〉 = (v, 0, 0),
the following tree-level mass terms:

Lu
Y = v(hu

21u2Lu
c
1L + hu

22u2Lu
c
2L + hu

23u2Lu
c
3L

+ hu
31u3Lu

c
1L + hu

32u3Lu
c
2L + hu

33u3Lu
c
3L

+ hU
2 u2LU

c
L + hU

3 u3LU
c
L) + h.c., (18)

which imply bare masses only for the top (u3) and charm
(u2) quarks. By taking v � 174 GeV and hu

22 ≈ hu
23 ≈

hu
32 ≈ hu

33 ∼ 0.5, we can obtain appropriate values for
the masses of the top and charm quarks, the first one of
the order of v and the second one proportional to v, but
suppressed by the difference of Yukawa couplings hu

22h
u
33−

hu
23h

u
32. So, for the up quark sector and at the tree level,
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the up quark u1 and the exotic SU(2)L singlet U remain
massless, even though their right-handed components mix
with the massive up type quarks. Later we will see how
they can acquire proper masses; in special, how the singlet
U may acquire a large mass and the ordinary u can acquire
a small mass in the context of the superpotential given by
(4).

For the down quark sector the third and four terms in
the superpotential produce, when we take 〈L̃τ 〉 = (0, 0, V ),
the following tree-level mass terms:

Ld
Y = V (hd

213D2Ld
c
1L + hd

223D2Ld
c
2L + hd

233D2Ld
c
3L

+ hd
313D3Ld

c
1L + hd

323D3Ld
c
2L + hd

333D3Ld
c
3L

+ hD
223D2LD

c
2L + hD

233D2LD
c
3L + hD

323D3LD
c
2L

+ hD
333D3LD

c
3L) + h.c., (19)

which imply bare masses of the order of V for the two
exotic down quarks and tree-level mixing of the two ex-
otic down quarks with the right-handed components of the
three ordinary down quarks. In what follows we are going
to show how the ordinary down quarks can acquire proper
mass values.

4.2.2 One loop radiative masses

Let us see how the quarks U , b (bottom) and s (strange)
can get appropriate masses via one loop radiative correc-
tions.

First, by using the Yukawa couplings in (4) and the
parameters in Vsoft in (11) we can draw the diagram in
Fig. 2 which shows how the exotic quark U gets a radiative
mass from the exotic down quark D2. Actually there is an-
other diagram similar to the one in Fig. 2, where D3L and
Dc

3L replace D2L and Dc
2L, respectively, and two more di-

agrams involving the squarks (leptoquarks) D̃iL and D̃c
iL,

for i = 2, 3. Since V ∼ M1 ∼ M2 = MSUSY the four
diagrams are of the same order of magnitude.

Even though Fig. 2 is a one-loop diagram, we can ex-
pect it to produce a mass value for the U quark larger
than 174 GeV (the top quark mass) due to the fact that
the mass generated is controlled by the three free, but
large parameters m2

45, V and |µ|, which are all at the TeV
scale. In the appendix we show how a reasonable choice
of the values of the parameters involved produces a large
radiative mass for the exotic quark U .

In a similar way we show in Fig. 3 how the two heav-
iest ordinary down quarks b and s get one-loop radiative
masses from the top quark. Because the top quark mass is
of the order of v ∼ 174 GeV, these masses are at least one
order of magnitude smaller than the U quark mass, with
the mass for the strange quark s suppressed by differences
of Yukawa couplings.

Again there are four diagrams for each radiative mass,
with the other three ones involving the charm quark c in
the internal line, and the squarks t̃ and c̃.
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Fig. 2. One loop diagram contributing to the radiative gener-
ation of the exotic up quark mass
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Fig. 3. One loop diagrams contributing to the radiative gen-
eration of the bottom b and strange s quark masses

4.2.3 Higher order radiative masses

Figures 4 and 5 show how the quarks in the first family
acquire higher order radiative masses in the context of the
superpotential in (4). As a matter of fact, Fig. 4 shows how
the up quark u gets a second order radiative mass from the
b quark (which already has a radiatively generated mass),
and Fig. 5 shows how the ordinary down quark d acquires
a mass via a triple mixing. Again, as before, the diagrams
shown are not the only ones contributing to these masses,
for example the fifth term in the superpotential gives a
mass for the down quark of the form hd

1d1Ld
c
1L〈φ0

5〉 via the
radiatively induced VEV for φ0

5 shown in Fig. 1.

4.3 Masses for neutralinos

The neutralino sector is the most sensitive to the partic-
ular values of the parameters, several of which are going
to be fixed in this section by the use of experimental con-
straints.
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Fig. 4. A two-loop diagram contributing to the radiative gen-
eration of the up quark mass
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Fig. 5. A three-mixing diagram contributing to the radiative
generation of the down quark mass

For this model the neutralinos are linear combinations
of the eight neutral particles in Lα and Lη (for α = e, µ, τ
and η = 4, 5), and of the five neutral gauginos. In the basis
ψ = (νe, νµ, ντ , N0

e , N0
µ, N0

τ , N0
4 , N0

5 , B̃0, Ã0
3, Ã

0
8, K̃

0,
˜̄K0), the tree-level mass matrix is given by

M =

(
M8 M85

MT
85 M5

)
, (20)

where

M8 = (21)


0 0 0 0 0 λv/2 λV/2 0
0 0 0 0 0 0 0 0
0 0 0 −λv/2 0 0 0 0
0 0 −λv/2 0 0 0 0 0
0 0 0 0 0 0 0 0

λv/2 0 0 0 0 0 0 0
λV/2 0 0 0 0 0 0 µ/2

0 0 0 0 0 0 µ/2 0




,

M85 =


0 0 0 0 0
0 0 0 0 0
0 0 0 −g3V 0
0 0 0 0 0
0 0 0 0 0

−√
2g1V/3 0 2g3V/

√
6 0 0

2
√

2g1v/3 −g3v/
√

2 −g3v/
√

6 0 0
0 0 0 0 0




,

(22)

and from the soft terms in the scalar potential we read
M5 = Diag(M1,M2,M2, A2×2), where A2×2 is a 2 × 2

matrix with entries zero in the main diagonal and M2 in
the secondary diagonal.

This 13×13 mass matrix is controlled by the parameter
λ in the sense that this parameter must be very small
in order to have only three light states, with the rest of
them having masses larger than half of the measured mass
of the Z0 neutral gauge boson. As a matter of fact, this
mass matrix has two eigenvalues equal to zero, associated
with a massless Dirac neutrino. Two more Dirac neutrinos
are associated with the values λv and µ and there are
seven Majorana masses different from zero, with only one
of them of the see-saw type. By using v = 0.174 TeV,
g3 = 0.65 and g1 = 0.38, as imposed by the low energy
phenomenology, we must tune the parameter λ to lie in
the range λ ∼ 10−9 and use for the other parameters the
optimal values V ∼ 2 TeV, M1 ∼ M2 ∼ 1 TeV, and |µ| ≈
10 TeV (as we will show shortly, |µ| ≥ 10 TeV). With these
values we obtain three light neutrinos: one Dirac neutrino
with a mass of the order of eV, one see-saw Majorana
neutrino with a mass of the order of the tenths of eV and
a zero mass Dirac neutrino (the former without including
radiative corrections which may introduce changes in this
tree-level mass spectrum). All the remaining eigenvalues
are above 500 GeV.

4.4 Masses for the scalar sector

For the scalars we have three sectors, one charged and two
neutrals (one real and the other one imaginary) which do
not mix, so we can consider them separately.

4.4.1 The charged scalar sector

For the charged scalars, in the basis (φ−
e , φ−

µ , φ−
τ , φ′−

e ,
φ′−

µ , φ′−
τ , φ−

4 , φ−
5 , φ′−

4 , φ′−
5 ) and after using (15) in the

tree-level approximation, we get the squared mass matrix
Mcs with the following non-zero entries:

(Mcs)11 =
(

−|λ|2 − g2
3

6
+
g2
1

9

)
V 2

+
(
g2
3

3
− 2g2

1

9

)
v2 +m2

11,

(Mcs)22 = m2
22 −

(
g2
3

6
− g2

1

9

)
V 2 +

(
g2
3

3
− 2g2

1

9

)
v2,

(Mcs)33 =
(

|λ|2 +
g2
3

2

)
v2,

(Mcs)44 = |he
31|2V 2,

(Mcs)66 = |he
33|2V 2,

(Mcs)88 = |µ|2 −
(
g2
3

6
− 2g2

1

9

)
V 2

−
(
g2
3

6
+

4g2
1

9

)
v2 +m2

5,

(Mcs)99 =
(

|λ|2 +
g2
3

2

)
V 2,
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(Mcs)1010 = |µ|2 +
(

|he
31|2 + |he

33|2 +
g2
3

3
+

2g2
1

9

)
V 2

−
(
g2
3

6
+

4g2
1

9

)
v2 +m2

5,

(Mcs)14 = (Mcs)41 = 2he
11µv,

(Mcs)16 = (Mcs)61 = he
13µv,

(Mcs)18 = (Mcs)81 = −λµV,
(Mcs)34 = (Mcs)43 = he

31µv,

(Mcs)36 = (Mcs)63 = he
33µv,

(Mcs)39 = (Mcs)93 =
(

|λ|2 +
g2
3

2

)
vV,

(Mcs)46 = (Mcs)64 = he
31h

e
33V

2,

(Mcs)48 = (Mcs)84 = λhe
11vV,

(Mcs)49 = (Mcs)94 = he
31µV,

(Mcs)410 = (Mcs)104 =
1
2
he′

13V,

(Mcs)68 = (Mcs)86 = λhe
13vV,

(Mcs)69 = (Mcs)96 = he
33µV

(Mcs)610 = (Mcs)106 =
1
2
he′

33V. (23)

This mass matrix has two zero eigenvalues which corre-
spond to the four Goldstone bosons needed to give masses
to the gauge bosons W± and K±. By using he

11 = he
13 =

he
31 = he

33 = 1, he′
13 = he′

33 = 1 GeV, m2
11 = m2

22 = m2
5 =

−m2
33 = 1 TeV2, and with the numerical values for the

other parameters as stated before, we obtain that all the
non-zero eigenvalues are above 850 GeV and so, contrary
to other models, there are no charged scalars at the elec-
troweak scale in the model analyzed here, which is some-
thing expected due to the fact that the members of the
isospin doublet in φ4, which are absorbed by W±

µ , are the
only charged scalars available at the electroweak scale.
This result is in agreement with the so-called “extended
survival hypothesis” [16] which consists in assuming that
the components of the Higgs representations required for
the breaking of a particular symmetry are the only ones
that are not superheavy (“scalar Higgs fields acquire the
maximum mass compatible with the pattern of symmetry
breaking” [16]).

4.4.2 The neutral scalar sector

For the neutral CP -even scalars, in the basis (φ0
eR, φ0

µR,
φ0

τR, φ′0
eR, φ′0

µR, φ′0
τR, φ0

4R, φ0
5R) and after using (15) in the

tree-level approximation, we get the squared mass matrix
Me with the following non-zero entries:

(Me)11 =
1
2

{
m2

11 −
(
g2
3

6
− g2

1

9
+ |λ|2

)
V 2

−
(
g2
3

6
+

2g2
1

9
+ |λ|2

)
v2
}
,

(Me)22 =
1
2

{
m2

22 −
(
g2
3

6
− g2

1

9

)
V 2 −

(
g2
3

6
+

2g2
1

9

)
v2
}
,

(Me)44 =
1
2
(
m2

11 −m2
33
)
,

(Me)55 =
1
2

{
m2

22 +
(
g2
3

3
+
g2
1

9

)
V 2 −

(
g2
3

6
+

2g2
1

9

)
v2
}
,

(Me)66 =
(
g2
3

3
+
g2
1

9

)
V 2,

(Me)77 =
(
g2
3

3
+

4g2
1

9

)
v2,

(Me)88 =
1
2

{
|µ|2 +m2

5 −
(
g2
3

6
− 2g2

1

9

)
V 2

+
(
g2
3

3
− 4g2

1

9

)
v2
}
,

(Me)18 = (Mch)81 =
λ

2
µV,

(Me)67 = (Mch)76 = −
(

|λ|2 +
g2
3

6
+

2g2
1

9

)
vV. (24)

The matrix Me has one eigenvalue equal to zero, corre-
sponding to one Goldstone boson. The non-zero eigenval-
ues, which can be calculated analytically, are

m2
e1 = (Me)22,

m2
e2 = (Me)44,

m2
e3 = (Me)55,

m2
e4 =

1
2

{(Me)11 + (Me)88

+
√

[(Me)11 − (Me)88]2 + 4[(Me)18]2
}
,

m2
e5 =

1
2

{(Me)11 + (Me)88

−
√

[(Me)11 − (Me)88]2 + 4[(Me)18]2
}
,

m2
e6 =

1
2

{(Me)66 + (Me)77

+
√

[(Me)66 − (Me)77]2 + 4[(Me)67]2
}
,

m2
e7 =

1
2

{(Me)66 + (Me)77 (25)

−
√

[(Me)66 − (Me)77]2 + 4[(Me)67]2
}
,

where me7 is associated with the lightest CP -even Higgs
scalar h. By introducing the numerical values for the pa-
rameters as calculated in the previous sections, we obtain
me7 = mh ≈ 85 GeV which is a bit larger than the lowest
bound on the lightest CP -even Higgs scalar in the MSSM
[3]. All the remaining eigenvalues are above 750 GeV. No-
tice that the scalar h is a mixture of φ0

4R and φ′0
τR, as it

should be according to the “extended survival hypothe-
sis” [16], and because of this it partially decouples from
the Z0 of the SM at high energies, since it is a mixture
of a singlet and a doublet under SU(2)L, with the singlet
having an U(1)Y hypercharge equal to zero.

For the neutral CP -odd scalars, in the basis (φ0
eI, φ

0
µI,

φ0
τI, φ

′0
eI, φ

′0
µI, φ

′0
τI, φ

0
4I, φ

0
5I) and after using (15) in the tree-

level approximation, we get the squared mass matrix Mo
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with the following non-zero entries:

(Mo)11 = (Me)11,
(Mo)22 = (Me)22,
(Mo)44 = (Me)44,
(Mo)55 = (Me)55,
(Mo)88 = (Me)88,
(Mo)18 = (Mo)81 = (Me)18. (26)

This mass matrix has three zero eigenvalues, which cor-
respond to three additional Goldstone bosons. The five
non-zero eigenvalues, at the tree level, are

m2
o1 = m2

e1, m2
o2 = m2

e2,

m2
o3 = m2

e3, m2
o4 = m2

e4,

m2
o5 = m2

e5, (27)

equal to five of the eigenvalues in the real sector as a con-
sequence of our assumption that there is no CP violation
in the neutral scalar sector. Notice, by the way, that this
model does not have a light pseudoscalar particle.

The four Goldstone bosons associated to the neutral
scalar sector (one CP -even and three CP -odd) will pro-
vide masses for the gauge bosons K0

µ, K̄0
µ, Z0

µ, and Z ′0
µ .

4.5 Masses for charginos

The charginos in the model are linear combinations of the
ordinary charged leptons, the two exotic electrons and the
two charged gauginos. In the gauge eigenstate basis ψ± =
(e+, µ+, τ+, E+

4 , E+
5 , W̃+, K̃+, e−, µ−, τ−, E−

4 , E−
5 , W̃−,

K̃−), the tree-level chargino mass terms in the Lagrangian
are of the form ψ±Mchψ

± where

Mch =

(
0 M7

MT
7 0

)
, (28)

and

M7 =




0 0 0 0 he
31V 0 0

0 0 0 0 0 0 0
0 0 0 0 he

33V 0 0
−λV 0 0 µ 0 −g3v 0

0 0 0 0 µ 0 −g3v
0 0 0 0 0 M2 0
0 0 −g3V 0 0 0 M2



. (29)

This mass matrix has two eigenvalues of the order of the µ
scale, and two other eigenvalues of the order of the SUSY
scale (M2 ∼ 1 TeV), two eigenvalues equal to zero, and one
see-saw eigenvalue of the order of 2M2

2 v
2/µ2, which for

µ � M2 ∼ V can account for the tau lepton mass. Notice
that the tau mass is related to the mass parameter M2
of the corresponding gaugino, but it is suppressed by the
parameter µ. So, at the tree level only the electron e and
the muon µ remain massless, but they pick up radiative
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Fig. 6. Radiatively induced VEV contributing to the e and µ
masses

masses. In fact, the seventh term in the superpotential
produces immediately the diagram in Fig. 6 which shows
how both, e− and µ−, get finite masses via the radiatively
induced VEV for the scalar field φ0

5 shown in Fig. 1. (This
mechanism has been used in the literature in [17] in order
to generate masses for charged fermions. See also [18].)

5 General remarks and conclusions

We have built the complete supersymmetric version of a
3-3-1 model for three families, the simplest one we have
been able to imagine. Contrary to the MSSM which has
two Higgs doublets at the electroweak energy scale, in this
model there is only one SU(2)L Higgs doublet acquiring a
non-zero VEV (the one associated to φ4). So, the MSSM is
not an effective theory of the model we have constructed.

For the model presented in this paper the slepton mul-
tiplets play the role of the Higgs scalars and no higgsinos
are required, which implies a reduction of the number of
parameters and degrees of freedom, compared to other 3-
3-1 supersymmetric models in the literature [10].

For our analysis we have taken the simplest VEV pos-
sible, able to break the symmetry and give, at the same
time, masses to the fermion fields in the model. The choice
of this simple VEV structure was dictated not only by
simplicity, but also by paying due attention to the general
mass spectrum of the particles. The most general VEV
structure for this model is of the form 〈φe〉 = (0, ve, Ve),
〈φµ〉 = (0, vµ, Vµ), 〈φτ 〉 = (0, vτ , Vτ ), 〈φ4〉 = (v4, 0, 0)
and 〈φ5〉 = (v5, 0, 0), which, even when properly rotated
(ve = Vµ = 0), gives a very messy scalar sector and can
dramatically change the mass spectrum presented here.
Obviously, there are in this general VEV structure a lot
of free parameters to play with, some of them able to solve
possible inconsistencies in the mass spectrum calculated.

There are in the model three mass scales: The elec-
troweak scale v ≈ 174 GeV (a value dictated by the weak
W± gauge boson mass), which is the same mass scale
associated with the SM; the SUSY-(3-3-1) mass scale
M1 ∼ M2 ∼ V ∼ 1–2 TeV, which is the same scale as-
sociated with the MSSM; and the µ scale which can be
as large as the Planck scale, but whose value is fixed
by demanding the tau lepton mass to lie in the range
10 TeV ≤ µ ≤ 100 TeV. As can be realized, for this model
we have the same µ problem that is present in the MSSM,
and it should find an explanation outside the context of
the analysis presented here.

We have aligned the vacuum in the way enunciated
in the main text, inspired in the non-SUSY model pre-
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sented in Sect. 2. This alignment produces a consistent
mass spectrum for quarks and charged leptons in the fol-
lowing way. First, the exotic down quarks and leptons get
masses of the order of the SUSY scale; then the top and
charm quarks get tree-level masses at the electroweak en-
ergy scale, with the mass for the charm quark suppressed
by differences of Yukawa couplings. The exotic up quark
U gets a one-loop radiative mass which, for specific val-
ues of the Yukawa couplings, can be made larger than 174
GeV, the top quark mass (see the appendix). The bot-
tom quark and the strange quark get one loop radiative
masses, with the mass of the strange quark suppressed
by differences of Yukawa couplings; then the up quark
and the down quark get higher order radiative masses.
For the known charged leptons only the tau gets a tree-
level mass at the electroweak scale, but suppressed by a
see-saw mechanism, with the electron and muon acquiring
loop masses via radiatively induced VEV. The analysis for
the neutrino sector has not been completed yet, but the
preliminary analysis presented in the main text does not
show inconsistencies.

The vector-like structure L4L ⊕ L5L, which seems ir-
relevant for the non-SUSY version of model because it
does not contribute to the anomaly constraint equations,
is mandatory in this SUSY version of the model because
without its presence it is not possible to provide us with
masses for the lepton sector.

The scalar sector of the model presented here is so
rich that even with the simple VEV used, it is able to
reproduce a consistent mass spectrum for the spin 1/2
particles by using different radiative mechanisms, some
of them new. For example, the way how the mass for the
down quark d is generated via a three-mixing loop diagram
plus a radiatively induced VEV has not been used in the
literature yet, as far as we know.

Even though the algebra involved in all the equations
related with the scalar sector (Sects. 3 and 4) is quite
tedious, the final results are simple, with mass matrices
that admit analytic solutions and neat physical interpre-
tations. This is just a byproduct of the Z2 symmetry intro-
duced in Sect. 3, whose reason of being is the suppression
of proton decay, with its final form dictated by discrete
anomaly cancellation constraint relationships, and by the
mass spectrum for the lepton fields.

In the main text we have also calculated the mass
value, at the tree level, of the lightest CP -even Higgs
scalar h which is larger than the lowest bound on the light-
est CP -even Higgs scalar in the MSSM, in spite of being
a mixture between a member of a pure SU(2)L doublet
φ0

4R and the singlet φ′0
τR.

To conclude, let us say that we feel a little unpleasant
with the small value λ ∼ 10−9, which seems unnatural and
may require some sort of fine tuning. We can avoid this
inconvenience by letting φ5, instead of φ4, to acquire the
zero order VEV (v, 0, 0). Then no tree-level mass terms for
the neutrinos show up, but two of the neutrinos do acquire
a two-loop radiative mass via a kind of Zee mechanism [19]
as depicted in Fig. 7, which are two among other graphs,
and show that the Zee mechanism is automatically present
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Fig. 7. Zee mechanism for neutrino masses

in the model discussed here. The price we have to pay
if we want to use this mechanism in order to generate
neutrino masses is the explanation of the mass spectrum
for the entire up quark sector which must be generated
via radiative corrections. In any case, the mass scale for
the neutrinos is controlled by the parameter λ, which is
not present in the quark sector of the model.
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Appendix

In this appendix we calculate the diagram in Fig. 2 and
analyze its numerical value. The algebra shows that this
diagram is finite and proportional to

∆ = N [M2m2
c4 log(M2/m2

c4) −M2m2
c5 log(M2/m2

c5)
+m2

c4m
2
c5 log(m2

c4/m
2
c5)], (A.1)

where N = h′D
2 hU

2 m
2
45M/[16π2(m2

c5 − m2
c4)(M

2 −
m2

c4)(M
2 − m2

c5)], M = hD
223V is the mass of the heavy

exotic down quark D, and mc4 and mc5 are the masses of
φ′+

4 and φ′−
5 , respectively. To estimate a value for ∆ we use

the following values obtained in Sects. 4.3 and 4.4 of this
paper: mc4 ≈ (Mcs)99 ≈

√
g2
3/2V, mc5 ≈ (Mcs)1010 ≈

|µ| ≈ 10 TeV, and m2
45 ≈ −2〈φ0

5〉|µ|2/v. Notice that the
value of ∆ is a function of the dimensionless parameter
〈φ0

5〉/v and of the Yukawa couplings hD
223, h

′D
2 and hU

2 . We
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are going to put the three Yukawa constants equal to a
common value h. The point now is to assign values to h
and also to the radiative correction 〈φ0

5〉/v which, being a
radiative correction to scalar masses in a supersymmetric
model, can be large. Table 1 shows the numerical evalua-
tion of ∆ (the mass of the exotic quark U) as a function
of these parameters.

Table 1. Radiative mass ∆ for the exotic quark U

〈φ0
5〉/v h ∆ (GeV)

0.1 4.1 203.5
0.2 3.0 207.8
0.4 2.2 206.0
0.6 1.9 219.2

So, by a reasonable choice of the values of the param-
eters involved in the calculation of the diagram in Fig. 2,
we can obtain a radiative mass for the exotic up quark U
larger than the top quark mass.
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Note added in proof. After the completion of the first
draft of this manuscript, we became aware of the exis-
tence of a related paper by J.C. Montero, V. Pleitez and
M.C. Rodriguez entitled “Supersymmetric 3-3-1 model
with right-handed neutrinos” [20]. Even though the gauge
and quark sectors are the same in the two papers, they
differ in the lepton and scalar sectors due to the fact
that in our model we introduce the vector-like structure
L4L⊕L5L. As a consequence, and contrary to the Montero,
Pleitez and Rodriguez analysis, we avoid the introduction
of higgsinos in our study. Because of this the results are
different in the two papers, conspicuously enough in the
three scalar sectors.


